БНБ "НТС" (48014) - Photogallery - Естественные науки - Математика - Технология
|
Доза ионизирующего излученияОпределение "Доза ионизирующего излучения" в НТСДоза ионизирующего излучения 1) мера излучения, получаемого облучаемым объектом, — поглощенная доза ионизирующего излучения; 2) количественная характеристика поля излучения — экспозиционная доза и корма. Поглощенная доза — средняя энергия ионизирующего излучения, выделенная в единице массы вещества облученного объема. Она зависит от вида интенсивности излучения (см. Ионизирующие излучения), энергетического и качественного его состава, времени облучения, а также от состава вещества. Д. и. и. тем больше, чем длительнее время излучения. Приращение дозы в единицу времени называется мощностью дозы, которая характеризует скорость накопления дозы ионизирующего излучения. Зависимость, поглощенной дозы от энергии излучения, его интенсивности и состава облучаемого вещества проявляется по-разному для различных видов ионизирующего излучения. Доза фотонного излучения (рентгеновского и гамма-излучения) зависит от атомного номера элементов, входящих в состав вещества. При одинаковых условиях облучения в тяжелых веществах она, как правило, выше, чем в легких. Например, в одном и том же поле рентгеновского излучения поглощенная доза в костях больше, чем в мягких тканях. В поле нейтронного излучения определяющим в формировании поглощенной дозы является ядерный состав вещества, а атомный номер элементов, входящих в состав биологической ткани, не имеет значения. Для мягких тканей живого организма поглощенная доза нейтронов определяется их взаимодействием главным образом с ядрами углерода водорода, кислорода и азота. Поглощенная доза в живой ткани в поле нейтронного потока зависит от энергии нейтронов. Это связано с тем, что нейтроны различной энергии избирательно взаимодействуют с ядрами вещества. При этом могут возникать заряженные частицы, гамма-излучение, а также образовываться радиоактивные ядра, которые сами становятся источниками ионизирующего излучения. Т.о., поглощенная доза при облучении нейтронами формируется за счет энергии вторичных ионизирующих частиц различной природы, возникающих в результате взаимодействия нейтронов с веществом. У других видов ионизирующего излучения (потоков электронов, тяжелых ионов, высокоэнергетического тормозного излучения ускорителей и т.п.) — свои особенности взаимодействия с веществом, которые и определяют зависимость дозы от энергии излучения и состава вещества. Независимо от вида первичного излучения поглощенная доза ионизирующего излучения в конечном итоге сформируется за счет энергии заряженных частиц, возникающих в результате преобразования энергии первичного излучения в облучаемом объекте. В качестве единицы поглощенной дозы излучения в СИ принят грей (Гр) в честь английского ученого Грея (L.Н. Gray), известного своими трудами в области радиационной дозиметрии. 1 Гр равен поглощенной дозе ионизирующего излучения, при которой веществу массой в 1 кг передается энергия ионизирующего излучения, равная 1 Дж. В практике распространена также внесистемная единица поглощенной дозы — рад (от англ. radiation absorbed dose). 1 рад = 10-2 Дж/кг = 100 эрг/г = 10-2 Гр или 1 Гр = 100 рад. Мощность дозы излучения соответственно выражается в Гр/с, Гр/ч, рад/с и т.п. Поглощение энергии излучения является первопричиной всех последующих процессов, которые при облучении живого объекта в конечном итоге приводят к тому или иному радиобиологическому эффекту. При данном виде излучения выход радиационно индуцированных эффектов определенным образом связан с поглощенной энергией излучения, которая в ряде случаев выражается простой пропорциональной зависимостью. Это позволяет дозу излучения принимать в качестве количественной меры последствий облучения, в частности живого организма.
Разные виды ионизирующего излучения при одной и той же поглощенной дозе оказывают на ткани живого организма различный биологический эффект, что определяется их относительной биологической эффективностью — ОБЭ (см. Ионизирующие излучения). Биологические эффекты, индуцируемые любым видом ионизирующего излучения, принято сравнивать с аналогичными эффектами, возникающими в поле рентгеновского излучения, которое принимают за образцовое:
На основе данных об ОБЭ разные виды ионизирующего излучения характеризуются своим коэффициентом качества. Коэффициент качества излучения является регламентированной величиной ОБЭ, устанавливаемой специальными нормативными органами. Например, нормами радиационной безопасности коэффициент качества рентгеновского и гамма-излучения при хроническом облучении принят за 1, для нейтронов с энергией 0,1—10 МэВ — 10, а для альфа-излучения и тяжелых ядер — 20. Произведение коэффициента качества (К) и поглощенной дозы (D) называется эквивалентной поглощенной дозой (Н): Эквивалентная доза используется для оценки радиационной опасности при хроническом облучении в малых дозах. Предполагается, что в полях излучения различного качества одно и то же значение эквивалентной дозы характеризует равную степень радиационной опасности. Это справедливо в пределах точности значений коэффициента качества. По мере накопления и уточнения данных по биологическому действию ионизирующего излучения различной природы значения коэффициента качества время от времени пересматривают.
Единицей эквивалентной дозы в СИ является зиверт (Зв) — по имени шведского ученого Зиверта (R.М. Sievert) — первого председателя Международной комиссии по радиологической защите (МКРЗ). Если в последней формуле поглощенную дозу излучения (D) выразить в греях, то эквивалентная доза будет выражена в зивертах. 1 Зв равен эквивалентной дозе, при которой произведение поглощенной дозы (D) в живой ткани стандартного состава и среднего коэффициента качества (К) равно 1 Дж/кг.
В качестве мер риска отдаленных стохастических эффектов облучения человека (см. Радиационная безопасность используют эффективную эквивалентную дозу. Она равна сумме средних значений эквивалентной дозы НТ, в различных органах и тканях человека умноженных на взвешивающие коэффициенты для этих органов и тканей, учитывающих их радиочувствительность WT:
Эффективная эквивалентная доза учитывает вклад отдельных органов и тканей организма и отдаленные стохастические эффекты при неравномерном облучении. Под неравномерным облучением здесь понимаются условия, при которых значения эквивалентной дозы оказываются различными для разных органов и тканей. При равномерном облучении НТ одинакова для любой точки тела, и
Для дозиметрической характеристики поля фотонного ионизирующего излучения служит экспозиционная доза. Она является мерой ионизирующей способности фотонного излучения в воздухе. Единица экспозиционной дозы в СИ — кулон на килограмм (Кл/кг). Экспозиционная доза, равная 1 Кл/кг, означает, что заряженные частицы (электроны и позитроны), освобожденные в 1 кг атмосферного воздуха при первичных актах поглощения и рассеяния фотонов, образуют при полном использовании своего пробега в воздухе ионы с суммарным зарядом одного знака, равным 1 кулону. Экспозиционную дозу используют для характеристики поля только фотонного ионизирующего излучения в воздухе. Она дает представление о потенциальном уровне воздействия ионизирующего излучения на человека При экспозиционной дозе в 1 Р поглощенная доза в мягкой ткани в этом же радиационном поле равна приблизительно 1 рад. Зная экспозиционную дозу, можно рассчитать поглощенную дозу и ее распределение в любом сложном объекте, помещенном в данное радиационное поле, в частности в теле человека Это позволяет планировать и контролировать заданный режим облучения. Специфической дозиметрической величиной, характеризующей поле излучения, является керма (от англ. KERMA — аббревиатура выражения Kinetic Energy Reteased in Material). Керма — кинетическая энергия заряженных частиц, освобожденных ионизирующим излучением любого вида, в единице массы облучаемого вещества при первичных актах взаимодействия излучения с этим веществом. При определенных условиях керма равна поглощенной дозе излучения. Для фотонного излучения в воздухе она является энергетическим эквивалентом экспозиционной дозы. Равномерность кермы такая же, как и поглощенной дозы; выражается в Дж/кг. Рассмотренные разновидности Д. и. и. применяют в медицинской радиологии (см. Радиология медицинская для оценки ожидаемого терапевтического эффекта и составления плана облучения (поглощенная доза), для задания и контроля режима облучения (экспозиционная доза), для контроля радиационной обстановки в целях безопасности персонала (эквивалентная доза), для прогнозирования отдаленных последствий облучения (эффективная эквивалентная доза). Библиогр.: Иванов В.И. Курс дозиметрии, М., 1988; Иванов В.И., Машкович В.П. и Центер Э.М. Международная система единиц СИ в атомной науке и технике, М., 1981; Маргулис У.Я. Атомная энергия и радиационная безопасность М., 1988.
Статья про "Доза ионизирующего излучения" в НТС была прочитана 317 раз |
TOP 15
|
|||||||